Constructions of complementarity functions and merit functions for circular cone complementarity problem
نویسندگان
چکیده
In this paper, we consider complementarity problem associated with circular cone, which is a type of nonsymmetric cone complementarity problem. The main purpose of this paper is to show the readers how to construct complementarity functions for such nonsymmetric cone complementarity problem, and propose a few merit functions for solving such a complementarity problem. In addition, we study the conditions under which the level sets of the corresponding merit functions are bounded, and we also show that these merit functions provide an error bound for the circular cone complementarity problem. These results ensure that the sequence generated by descent methods has at least one accumulation point, and build up a theoretical basis for designing the merit function method for solving circular cone complementarity problem.
منابع مشابه
On merit functions for p-order cone complementarity problem
Merit function approach is a popular method to deal with complementarity problems, in which the complementarity problem is recast as an unconstrained minimization via merit function or complementarity function. In this paper, for the complementarity problem associated with p-order cone, which is a type of nonsymmetric cone complementarity problem, we show the readers how to construct merit func...
متن کاملTwo classes of merit functions for the second-order cone complementarity problem
Recently Tseng [Merit function for semidefinite complementarity, Mathematical Programming, 83, pp. 159-185, 1998] extended a class of merit functions, proposed by Z. Luo and P. Tseng [A new class of merit functions for the nonlinear complementarity problem, in Complementarity and Variational Problems: State of the Art, pp. 204-225, 1997], for the nonlinear complementarity problem (NCP) to the s...
متن کاملA Two-Parametric Class of Merit Functions for the Second-Order Cone Complementarity Problem
We propose a two-parametric class of merit functions for the second-order cone complementarity problem (SOCCP) based on the one-parametric class of complementarity functions. By the new class of merit functions, the SOCCP can be reformulated as an unconstrainedminimization problem.The new class ofmerit functions is shown to possess some favorable properties. In particular, it provides a global ...
متن کاملChen Two classes of merit functions for the second - order cone complementarity problem
Recently Tseng (Math Program 83:159–185, 1998) extended a class of merit functions, proposed by Luo and Tseng (A new class of merit functions for the nonlinear complementarity problem, in Complementarity and Variational Problems: State of the Art, pp. 204–225, 1997), for the nonlinear complementarity problem (NCP) to the semidefinite complementarity problem (SDCP) and showed several related pro...
متن کاملGrowth behavior of two classes of merit functions for symmetric cone complementarity problems
In the solution methods of the symmetric cone complementarity problem (SCCP), the squared norm of a complementarity function serves naturally as a merit function for the problem itself or the equivalent system of equations reformulation. In this paper, we study the growth behavior of two classes of such merit functions, which are induced by the smooth EP complementarity functions and the smooth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 63 شماره
صفحات -
تاریخ انتشار 2016